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Benzene is an archetypal aromatic compound and one of the
best known molecules of this type. Metallabenzenes are a class of
benzene analogues on which a CH group has been formally replaced
by a transition metal and its associated ligands (CharfThe L,M
fragment of the six-membered metallacycle mainly includes Os
and Ir3 Recently, Pt metallabenzenes have been also repbrted.

1,2,4-Cyclohexatriendl@ in Chart 2) is a short-lived strained
allene isomer of benzerteThe cyclic lla structure has been
proposed as the key intermediate in Diefdder reactions of enynes
with alkynes, and in several rearrangemér@anclusive evidence
for lla was obtained by the isolation of trapping products, after
lla had been generated in the presence of activated olefims.
contrast to benzene and its derivatives, analogue métalla-
structures in which the 3-CH group is formally replaced byl L
transition metal fragmentlp in Chart 2) are unknown. Chart 1

We wish to report the preparation and characterization of the LM
first isometallabenzene with the structure of a 1,2,4-cyclohexatriene. @ " Q
This novel compound3 in Scheme 1, has been obtained by a two-

step procedure, starting from the elongated dihydrogen complex
1.8 Chart 2

Treatment at-50 °C of dichloromethane solutions df with LM
2.0 equiv of HBR*OEY, and 4.5 equiv of phenylacetylene affords Q\ @\
the 16e-alkenyl-alkynyl-carbyne intermediaf which was isolated
as a green solid in 78% yiefdFigure 1 shows a view of the

Figure 1. Molecular diagram of the cation of compl&x

structure of the cation of this species, which is notable not only S¢7€me 1

for the unsaturated character of the osmium afdmat also because 'P’BFl’ “1BF, _H PP T1BF,
it contains three different metatarbon bonds: two osmium Fes. o M, W o=, - OsmC—CH.Ph
carbon single bonds, @<(sp) (Os—C(1)= 2.036(9) A) and Os o? | 0~ % “Phc=cH ol
C(sp) (Os-C(9) = 2.029(8) A), and a triple OsC(sp) bond (Os PPr, oS PP

C(17)= 1.699(7) A). The geometry around the osmium atom can 1 Prp —BF 2

be described as a distorted trigonal bipyramid with apical phos- oc,,3| CO ! / -NaBH‘NaCI

phines (P(1)}Os—P(2) = 166.71(7}) and inequivalent angles (' SN

within the Y-shaped equatorial plane (C(¥Qs—C(9) = 114.8- e C ||>iPr co

(3)°, C(17)-0Os—C(1) = 101.1(4¥, and C(9)-0Os—-C(1) = 144.1- PH a ¢ ,Prap cHPh M

(3)°). The3P{H} NMR spectrum is consistent with this geometry,
and in dichloromethand, at —50 °C, it contains a singlet at 46.5

/c Cw_ \\Ph
: \\c c/ \
ppm. In agreement with the presence of the carbyne, alkenyl, and \—\_/ \_\_\ PF,r b

alkynyl ligands, the3C{*H} NMR spectrum shows resonances at
275.1 (C(17)), 155.7 (C(1)), and 140.8 (C(9)) ppm, respectively.
In dichloromethane at temperatures higher th&0 °C, complex 1.525(7), and 1.532(6) A i). These values strongly support the
2 is unstable and evolves into a complex mixture of unidentified metallallb structure. In contrast to th&;-symmetric structure of
products. However, in the presence of an excess of NaCl, the 1,2,4-cyclohexatriene, the six-membered rin@ is almost planar.
evolution takes place in a controlled way, and the cyclic-allene The torsion angle C(18)C(17)-C(24)-0s(1) (C(60)-C(59)
derivative3 is formed!? C(66)-0s(2) in9) is 165.0(8) (—162.7(8) in S). The greater size
The structure oB has two chemically equivalent but crystallo-  of the osmium atom with regard to the carbon atom is manifested
graphically independent molecules of complex in the asymmetric in the C(17)-C(24)-0s(1) angle (C(59)C(66)-0s(2) inS). Its
unit (enantiomers). A drawing of thB-enantiomer is shown in value of 158.5(3) (159.3(4} in S is about 28 larger than the
Figure 2. The bond lengths in the sequence C{IAR4)-0Os(1) related parameter (C(3C(2)—C(3) angle) calculated for the
C(1)—C(9)—C(10)-C(17) (C(59)-C(66)-0Os(2)-C(43)-C(51) isobenzene (1308 or 132.479). This angle is also slightly larger
C(52)-C(59) in § are 1.331(6), 1.806(4), 2.043(4), 1.335(6), than the OsC(sp)-C(sp) angle in the osmabenzyne complexes
1.513(6), and 1.542(6) A (1.330(6), 1.798(5), 2.057(5), 1.328(7), reported by Jia and co-workers (148.7(anhd 153.8(4).12 In the
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0,CCHg)(CO)(PPr3),]BF4. On the other hand, complex {g)-
CH=CHC(CHz)=CHjg}{¥1-OC(O)CHs} (CO}(PPr3),, which has a
carbonyl group trans-disposed to the butadienyl, reacts withHBF
to afford isoprene andis-[Os(?-0O,CCHs)(CO)(PPrs),]BF4.14
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